Neural regulation of slow-wave frequency in the murine gastric antrum.

نویسندگان

  • Abigail S Forrest
  • Tamás Ordög
  • Kenton M Sanders
چکیده

Gastric peristaltic contractions are driven by electrical slow waves modulated by neural and humoral inputs. Excitatory neural input comes primarily from cholinergic motor neurons, but ACh causes depolarization and chronotropic effects that might disrupt the normal proximal-to-distal spread of gastric slow waves. We used intracellular electrical recording techniques to study cholinergic responses in stomach tissues from wild-type and W/W(V) mice. Electrical field stimulation (5 Hz) enhanced slow-wave frequency. These effects were abolished by atropine and the muscarinic M(3)-receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide. ACh released from nerves did not depolarize antral muscles. At higher rates of stimulation (10 Hz), chronotropic effects were mediated by ACh and a noncholinergic transmitter and blocked by muscarinic antagonists and neurokinin (NK(1) and NK(2))-receptor antagonists. Neostigmine enhanced slow-wave frequency, suggesting that the frequency of antral pacemakers is kept low by efficient metabolism of ACh. Neostigmine had no effect on slow-wave frequency in muscles of W/W(v) mice, which lack intramuscular interstitial cells of Cajal (ICC-IM). These muscles also showed no significant chronotropic response to 5-Hz electrical field stimulation or the cholinergic agonist carbachol. The data suggest that the chronotropic effects of cholinergic nerve stimulation occur via ICC-IM in the murine stomach. The capacity of gastric muscles to metabolize ACh released from enteric motor neurons contributes to the maintenance of the proximal-to-distal slow-wave frequency gradient in the murine stomach. ICC-IM play a critical role in neural regulation of gastric motility, and ICC-IM become the dominant pacemaker cells during sustained cholinergic drive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prostaglandin regulation of gastric slow waves and peristalsis.

Gastric emptying depends on functional coupling of slow waves between the corpus and antrum, to allow slow waves initiated in the gastric corpus to propagate to the pyloric sphincter and generate gastric peristalsis. Functional coupling depends on a frequency gradient where slow waves are generated at higher frequency in the corpus and drive the activity of distal pacemakers. Simultaneous intra...

متن کامل

Regulation of Gastric Electrical and Mechanical Activity by Cholinesterases in Mice

BACKGROUND/AIMS Gastric peristalsis begins in the orad corpus and propagates to the pylorus. Directionality of peristalsis depends upon orderly generation and propagation of electrical slow waves and a frequency gradient between proximal and distal pacemakers. We sought to understand how chronotropic agonists affect coupling between corpus and antrum. METHODS Electrophysiological and imaging ...

متن کامل

Voltage sensitivity of slow wave frequency in isolated circular muscle strips from guinea pig gastric antrum.

In circular muscle preparations isolated from the guinea pig gastric antrum, regular spontaneous electrical activity (slow waves) was recorded. Under normal conditions (6 mM K+), the frequency and shape of the slow waves were similar to those observed in ordinary stomach smooth muscle preparations. When the resting membrane potential was hyperpolarized and depolarized by changing the extracellu...

متن کامل

Electrical arrhythmias in the human stomach.

Myoelectrical activity was recorded from the human antrum on 136 occasions using a monopolar mucosal electrode in preoperative and post-vagotomy patients, and bipolar serosal electrodes in post-cholecystectomy patients, and the incidence of antral arrhythmias observed. Arrhythmias of long duration were observed in five out of 62 patients after vagotomy and one out of 10 patients after cholecyst...

متن کامل

Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.

Slow waves are known to originate orally in the stomach and to propagate toward the antrum, but the exact location of the pacemaker and the precise pattern of propagation have not yet been studied. Using assemblies of 240 extracellular electrodes, simultaneous recordings of electrical activity were made on the fundus, corpus, and antrum in open abdominal anesthetized dogs. The signals were anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 290 3  شماره 

صفحات  -

تاریخ انتشار 2006